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Abstract

Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility
of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures
consisting of these lattice materials, but the design of such structures will require accurate, efficient sim-
ulation techniques. Equivalent continuum models have several advantages over discrete truss models of
stretch dominated lattices, including computational efficiency and ease of model construction. However,
the development an equivalent model suitable for representing the dynamic response of a periodic truss
is complicated by microinertial effects. This paper derives a dynamic equivalent continuum model for
periodic truss structures and verifies it against detailed finite element simulations. The model must
incorporate microinertial effects to accurately reproduce long-wavelength characteristics of the response
such as anisotropic elastic soundspeeds. The formulation presented here also improves upon previous
work by preserving equilibrium at truss joints for affine lattice deformation and by improving numerical
stability by eliminating vertices in the effective yield surface.
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1. Introduction

The development of additive manufacturing
(AM) techniques allows the design of both the
macroscale and microscale geometry of a struc-
tural component (Kruth et al., 1998; Murr et al.,
2012; Rosen, 2007). Control over the micro-
geometry opens up a new design space, effectively
allowing the designer to control the properties of
a material by varying the material’s structure.
Cellular lattice materials are a promising class
of micro-geometries, offering excellent stiffness-to-
weight ratios and simple construction by tiling the
periodic unit cell into a macroscale shape (Evans
et al., 2001; Warren and Kraynik, 1987). A sub-
class of lattice materials are stretch dominated
lattice materials, where the principal deformation
mechanism is axial deformation of the struts. Be-
cause the scaling between stiffness and density in
these structures is linear they offer the possibil-
ity of exceptionally light but stiff materials (Zheng
et al., 2014).

The classic structure where deformation occurs
through axial stretching and compression of a se-
ries of connected struts is the truss. Stretch
dominated lattice materials then resemble peri-
odic trusses, albeit on a smaller length scale than
the typical structural truss (Hutchinson and Fleck,
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2006; Martinsson and Babuška, 2007). Experi-
mental and computational studies of discrete truss
structures reveal complicated dynamic behavior,
including the existence of band gaps (Howard and
Pao, 1998; Signorelli and von Flotow, 1988) and
microjetting under impact loading (Winter et al.,
2014). Representing these complex phenomena
with an equivalent continuum model is challeng-
ing. An equivalent continuum model is a mate-
rial formulation which replaces a periodic discrete
structure with a continuum that deforms equiva-
lently under all loads; static and dynamic. Equiv-
alent continuum models have several advantages
over discrete simulations: they integrate more eas-
ily into existing finite element frameworks; they
generally reduce the computational complexity,
measured in number of degrees of freedom, re-
quired to represent a periodic structure; and they
eliminate the difficulty inherent in meshing a com-
plex microgeometry.

This work fills a gap in previous research on
modeling periodic truss systems by focusing on
the dynamic properties of equivalent continuums.
Previous research by Pao et al. (1999); Srikantha
Phani et al. (2006) and Yong and Lin (1992) de-
scribes models of discrete trusses under dynamic
loading. Hutchinson and Fleck (2006) and Mohr
(2005) develop equivalent continuum models of
trusses under quasi-static loading, which are dis-
cussed in more detail subsequently. However,
no work to date formulates an equivalent contin-
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uum model suitable for representing periodic truss
structures undergoing dynamic loading. Such a
model must consider the inertial properties of peri-
odic trusses in addition to elastic and plastic prop-
erties. Microinertial effects accounting for the ac-
tual mechanism of wave propagation through the
discrete microstructure become significant when
the material is loaded dynamically, for example
under impact loading (Fish et al., 2002b,a, 2012;
Wang and Sun, 2002). Typically, a model incor-
porates microinertial effects in order to better rep-
resent the dispersion caused by higher order de-
formation modes. This work demonstrates that
a model must consider microinertial effects even
to accurately represent the long wavelength re-
sponse of a periodic truss, even though the long
wavelength limit only exercises the lowest defor-
mation modes. Additionally, the equivalent con-
tinuum model described here improves upon pre-
vious models by developing a formula for the re-
solved tension in the truss members that better
preserves equilibrium at the joints and by eliminat-
ing numerical instabilities in the plastic flow rule
via a method gleaned from an analogy to crystal
plasticity models.

The presentation of the model is organized as
follows. Section 2 describes previous equivalent
continuum models by Hutchinson and Fleck (2006)
and Mohr (2005) and describes the problem of
vertices on the effective yield surface. Section 3
derives an equivalent continuum model for peri-
odic truss structures, including microinertial ef-
fects. Section 4 verifies the model against quasi-
static and dynamic finite element simulations of a
discrete octet truss. Finally, Section 5 summarizes
the work and describes possible future uses of the
model.

2. Quasi-static elastic and plastic equiva-

lent continuum models

A truss is a structural system comprised of joints
connected by members called struts. The mechan-
ical assumption of the system is that the joints are
structural pins that do not transfer moments and,
correspondingly, that the struts transmit only ax-
ial forces. In a periodic truss, the combination
of a motif and lattice describes the position of all
joints. A motif is a collection of vectors describ-
ing the position of joints about a common point.
Hutchinson and Fleck (2006) refer to each vector
as a joint basis vector and the collection of vectors
as the joint basis. A lattice is a set of vectors de-
scribing the translational symmetry of these com-
mon lattice points. The linear combination

xi =
n
X

k=1

mkbk (1)

x (e1)z (e3)

y (e2)

l

Figure 1: Octet truss unit cell. All struts have equal lengths
l. The three lattice vectors have the same length and point
in the directions of the indicated cartesian coordinate sys-
tem. Therefore, the octet truss has a cubic lattice.

describes the position of any lattice point i in a
lattice for the set of lattice vectors bk and any set
of integers mk. Here n is the dimensionality of the
system. Similarly, the position or, equivalently,
the connectivity of the struts must also have trans-
lational symmetry described by the lattice vectors.
Hutchinson and Fleck (2006) describes the posi-
tion of the struts with a set of vectors called the
strut basis. An infinite, periodic truss does not
consider boundary effects – the lattice extends to
infinity in all directions. A single unit cell, encom-
passing all the symmetries of the periodic truss,
fully describes such a structure. Figure 1 shows
one possible unit cell for a periodic octet-truss.

Hutchinson and Fleck (2006) describe a method
based on the Bloch wave theory for calculating the
effective equivalent elastic tensor for any 2D or 3D
periodic truss structure. Their approach is to cal-
culate the sum of the strain energy in all struts
in the unit cell for an arbitrary macrostrain field,
divide by the unit cell volume to find the strain en-
ergy density, and then take the second derivative
with respect to the strain to find the effective elas-
tic stiffness tensor. The strain energy density per
unit reference volume in an arbitrary, linear elastic
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truss with constant Young’s moduli is given by

� (") =
E

2V0

nbars
X

i=1

Aili"
2
i (2)

where V0 is the reference unit cell volume, E is the
Young’s modulus, Ai the strut cross-sectional area,
li the strut length, and "i the axial strain of a strut
under a given loading. Assuming the deformation
remains affine for all joints, the strain in each strut
is

"i = ni · " · ni (3)
where " is the macroscale strain tensor and ni the
strut normal. Taking the second derivative with
respect to strain yields the formula

C = E⇢̄Ĉijkl (4)

with

Ĉ =
nbars
X

s=1

Ailini ⌦ ni ⌦ ni ⌦ ni/

nbars
X

i=1

liAi. (5)

Here ⇢̄ is the relative density of the equivalent con-
tinuum – the ratio of the density of the truss as a
whole to the density of the solid material compris-
ing the struts – assuming the volume of the joints
is small. This method and that of Hutchinson and
Fleck (2006) produce the same equivalent elastic-
ity tensor for simple lattices – periodic trusses for
which a Bravais lattice describes the position of
the joints.

Mohr (2005) describes a theory of equivalent
continuum plasticity for truss structures. The the-
ory first defines yield criteria for individual struts,
for example plastic yielding and elastic buckling.
Mohr then defines the yield surface of the equiva-
lent continuum material to be the locus of points
in stress space that cause any single strut to yield.
Figure 2 shows a 2D slice in stress space of the
yield surface this method generates for the octet
truss, only considering a single yield state of �0

in either compression or tension. In the full stress
space, these types of yield surfaces consist of the
intersection of hyperplanes, with one hyperplane
for each yield criteria in each strut. Associated
plastic flow then occurs in directions normal to the
yield surface. The problem with this definition of
equivalent plasticity is the vertices where multi-
ple hyperplanes intersect. At these points, there
is no clearly defined normal to the yield surface
and plastic flow becomes degenerate. This causes
numerical instability in the implemented plastic-
ity model – a problem which has also been ob-
served in models of plasticity for rate-independent
single crystals (Kocks, 1998). The equivalent con-
tinuum model developed in this work solves this
problem of vertices and also introduces a correc-
tion to Mohr’s formula for the tension resolved in
each strut.

0 0.125 0.25-0.125-0.25

0

0.125

0.25

-0.125

-0.25

�xx/�0

�yy/�0

Figure 2: The yield surface of the octet truss for ⇢̄ = 0.9,
defined as the locus of strut yield stresses, projected onto
the �

xx

-�
yy

plane.

3. Collapse model

3.1. Pressure sensitive, viscoplastic flow

Consider the unit cell of a periodic truss struc-
ture. Neglecting plasticity and given the displace-
ments of the joints a and b defining strut i, the
elongation of the strut is

ei = ni · (da � db) (6)

with ni the strut normal, ni = (xa � xb) /li with
x

a

and x

b

the nodal positions and li = kxa � xbk,
and da and db the displacements of joints a and
b, respectively. Assuming a linear relation between
engineering strain and stress, the stress in the strut
is

�i =
E

li
ni · (da � db) (7)

with E the Young’s modulus of the struts. As-
sume the Cauchy-Born hypothesis with a simple
lattice. Then the displacement of any joint in the
periodic truss under an applied macroscopic strain
field " (x) is affine and given by

da = " · xa. (8)

Now consider plasticity. Additively decompose
the strain into elastic and plastic parts " = "e+"p.
Equation 8 becomes

da = ("e + "p) · xa = d

e
a + d

p
a (9)

with d

e
a := "e · xa and d

p
a := "p · xa. Assume

that only elastic strut displacements cause stress in
Eq. 7. Section 2 shows, based on Hutchinson and
Fleck (2006), that the relation between stress and
elastic strain for any periodic truss comprised of
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struts with the same elastic stiffness, but possibly
different areas, is

� = ⇢̄EĈ : "e (10)

where Ĉ is a unitless second order tensor which de-
pends on the strut lengths and areas and the truss
topology. Inverting Eq. 10 and combining with
Eqs. 7 and 8 yields a formula relating macroscale
stress to the strut tension:

�i =
1

⇢̄
ni · Ĉ�1 : � · xa � xb

li
(11)

Recognizing that ni =
xa�xb

li
and rearranging the

equation yields:

�i =
1

⇢̄
(ni ⌦ ni) : Ĉ

�1 : � (12)

Note the strong similarity of this equation to Eq.
13 of Mohr (2005):

�i =
1

ci
� : (ni ⌦ ni) (13)

with ci the volume fraction of the strut. See
Fig. 3 for examples of the different load distri-
butions generated for an octet truss by these two
different strut tension expressions. Consider the
circled joint for the uniaxial load case. Three
struts meet at this joint with strut normals n1 =p
2/2g1 +

p
2/2g3, n2 =

p
2/2g2 +

p
2/2g3, and

n3 =
p
2/2g1 +

p
2/2g2, with gi the basis vectors

of the cartesian coordinate system shown in the
figure. This joint is also subjected to the force re-
sulting from the imposed uniaxial �xx in direction
n4 = g1. As the figure shows, calculating the strut
tensions via Eq. 13 and writing the resulting nodal
equilibrium equation yields

0 = f1n1 + 0n2 + f3n3 + f4n4, (14)

i.e. zero force in strut with normal n2. Summing
forces in the y-direction (g2) shows that this joint
cannot be in equilibrium. However, Eq. 12 cor-
rectly generates a compressive force in the strut
with normal n2, satisfying the nodal equilibrium
condition. This is a general feature of Eq. 12,
provided the lattice topology is simple, because
the stress state assumed by Eqs. 4 and 5 min-
imizes the internal energy. For complex lattices
these equations would have to be modified to ac-
count for internal degrees of freedom. Equation
12 would still preserve equilibrium, but the unit-
less topology tensor Ĉ would now depend on the
current strain ", requiring iteration to solve for the
equilibrium strut stresses.

Equation 12 also resembles the expression for
calculating the shear resolved along a single sys-
tem in a crystal plasticity model (see, for example

Asaro 1983). Section 2 described the yield sur-
face of periodic trusses and observed the degener-
acy of plastic flow at yield surface vertices. Mod-
els of grain-scale plasticity in metals, for example
the Taylor-Bishop-Hill theory of rate-independent,
single FCC crystal plasticity, encounter the same
problem (Bishop and Hill, 1951b,a). The solution
typically adopted by crystal plasticity models is to
make the yield surface moderately rate-sensitive
(Kocks, 1998). Adopting this approach for peri-
odic trusses smooths the yield surface at the inter-
section of the hyperplanes representing strut limit
states (see Fig. 2), preventing degenerate flow at
the vertices. Plastic flow in actual materials is
at least somewhat rate sensitive, so at the worst
introducing a moderate rate sensitivity into the
model simply overestimates the physical rate sen-
sitivity.

There is a fundamental similarity between crys-
tal plasticity models and equivalent truss models
– both seek to describe the deformation of lattice
materials. In crystal models the material consists
of individual atoms positioned in a lattice. For a
truss model, the lattice consists of the joints. The
key differences between the two types of models is
the deformation mechanism under consideration –
for crystals shear along crystallographic planes; for
trusses axial deformation along the struts. Never-
theless, the final systems of equations of the two
models are very similar.

For small deformations, the elastic tensor relates
the rate of elastic strain to the stress rate:

�̇ =
˙̄⇢

⇢̄
� + ⇢̄EĈ : ("̇� "̇p) . (15)

Following the ideas of crystal plasticity kinematics,
the plastic strain rate is an additive composition of
uniaxial strains along each strut in the truss unit
cell:

"̇p =
nbars
X

i=1

"̇i (ni ⌦ ni) . (16)

The uniaxial strain rate along each strut varies
with the tensile stress in the strut viscoplastically:

"̇i = "̇0

�

�

�

�

�i

�̄i

�

�

�

�

n�1
�i

�̄i
(17)

where �i is the strut stress, defined by Eq. 12, �̄i

the uniaxial strut flow stress, "̇0 a reference strain
rate, and n the rate-sensitivity parameter. This
expression is essentially identical to the resolved
shear/slip equation commonly adopted for crystal
plasticity models (see, for example, Roters et al.,
2010) but replaces shear stress and strain with ten-
sile stress and strain. Let "̇0 =

p

2/3"̇ : "̇, the
effective strain rate, and use n = 20 for low-to-
moderate rate sensitivity.
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Mohr (2005) (Eq. 13)Current work (Eq. 12)

Uniaxial

Complex

a) b)

c) d)

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

3.0
�/⇢̄

y-direction
equilibrium
failure

x
z

y

Figure 3: Strut tensions from the two different strut tension formulas (Eq. 12 from this work and Eq. 13
from Mohr, 2005) for an octet truss under two different stress states. State “Uniaxial” is uniaxial, x-direction
tension (

⇥
� 0 0 0 0 0

⇤
) and state “Complex” is a combination of biaxial x-y tension and xz shear

(
⇥

�/4 �/4 0 0 �/4 0
⇤
). The formula from Mohr develops non-equilibrium strut tensions, as demonstrated

for the y-direction of the indicated joint for the uniaxial loading.
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In general the model can track the flow stress
separately in each strut. This requires maintaining
a history variable for each strut. To reduce the
computational expense of tracking and updating
these variables the formulation adopts, again from
crystal plasticity, the idea of isotropic hardening:

˙̄�i = ˙̄� = H

nbars
X

i=1

|"̇i| (18)

�̄ (t = 0) = �0

where �0 is the yield stress of the struts and H the
hardening modulus.

While these expressions are for small deforma-
tions, the similarity of Eqs. 12, 15, 16, 17, and
18 to their crystal plasticity counterparts means
methods of extending crystal plasticity kinematics
to large deformations apply equally well to the pe-
riodic truss equations, provided the deformation
remains affine. For example, methods of comput-
ing and applying the large rotations for crystal
plasticity (e.g. Hill and Rice (1972); Forest and
Pilvin (1999); Messner et al. (2015)) also apply
to the periodic truss. Even the interpretation of
these rotations is similar between the two mod-
els: in crystal plasticity large rotations represent
the deformation of the atomic lattice, in the pe-
riodic truss model they represent the deformation
of the lattice of truss joints. This analogy breaks
down with the presence of internal degrees of free-
dom (complex lattices). In this case, the updated
joint positions would require explicit consideration
of internal equilibrium. The updated joint coordi-
nates, including rotations, could be calculated by
minimizing the strain energy as a function of the
position of the internal degrees of freedom.

These expressions only define the constitutive
response of the periodic truss at a constant value
of relative density. To study the dynamic collapse
of periodic truss structures the equations must be
supplemented by an evolution equation for the rel-
ative density ⇢̄. Since ⇢̄ = Vm

V where Vm is the
volume of the truss material and V the total vol-
ume the rate-of-change of the relative density is
˙̄⇢ = V̇m

V �
Vm
V 2 V̇ . Assuming the truss material re-

mains approximately incompressible compared to
the equivalent continuum as a whole and neglect-
ing elastic volume change:

˙̄⇢ = �⇢̄ V̇
V

= �⇢̄ tr "̇p. (19)

A coupled, implicit integration of Eqs. 15, 18,
and 19 supplemented by Eqs. 12, 16, and 18 define
the model. Algorithm 1 summarizes the stress up-
date procedure. In the algorithm, Eq. 12 defines
the strut tensions �i. The appendix details the Ja-
cobian function required in the material update.

Algorithm 1 Stress update procedure for the pe-
riodic truss model.

function update(�"n+1, �n, �̄n, ⇢̄n)
x 

⇥

�n �̄n ⇢̄n
⇤

�"0  
p

2/3�"n+1 : �"n+1

while kRk > tol do

�"p  
Pnbars

i=1 �"0
�

�

�i
�̄

�

�

n�1 �i
�̄ (ni ⌦ ni)

R�  (1 + tr�"p)� � �n � ⇢̄EĈ ·
(�"n+1 ��"p)

R�̄  �̄ � �̄n �H
Pnbars

i=1 �"0
�

�

�i
�̄

�

�

n

R⇢̄  ⇢̄� ⇢̄n + ⇢̄ tr�"p

R 
⇥

R� R�̄ R⇢̄

⇤

J jacobian(�, �̄, ⇢̄,�"n+1)
�x �J�1 ·R
x x+�x

⇥

� �̄ ⇢̄
⇤

 x

end while

return �, �̄, ⇢̄
end function

3.2. Inertial effects
3.2.1. Derivation

In the absence of an applied body force, the
equation

finteria + finternal = 0 (20)

summarizes the conservation of linear momentum.
Here

finternal = r · � (") (21)

gives the internal body force, with � (") the
stress/strain relation derived above. The inertial
force in the struct normal direction for a single
strut is:

fi =

ˆ li

0
⇢BAiüi (⇠i) d⇠i. (22)

Assuming small deformations and a simple lattice,
the Cauchy-Born assumption gives the joint accel-
erations as a function of the second time derivative
of the applied strain

ü = "̈ · x. (23)

Using üi = ü · ni and Eq. 22, the contribution of
a single strut to the inertial force of the periodic
structure is

fi =

 ˆ li

0
⇢BAini · "̈ · xd⇠i

!

ni (24)

including vector direction.
The inertial body force of the the homogenized

truss is the volume-average of the contributions of
each strut in the unit cell:

finertia =
⇢B
V

ˆ
V

 ˆ li

0
Aini · "̈ · xd⇠i

!

nidV.

(25)
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The field variables are constant in the line integral
over the struts:

finertia =
⇢B
V

ˆ
V

"̈ · x ·
(ˆ li

0
Ai (ni ⌦ ni) d⇠i

)

dV

(26)

finertia =
⇢B
V

ˆ
V

liAi"̈ · x · (ni ⌦ ni) dV (27)

The spatial gradient of Eq. 23 gives

rü = r"̈ · x+ "̈. (28)

Therefore, in the first-order approximation (for a
constant macrostrain field):

rü = "̈. (29)

By integration by parts, Eq. 27 becomes

finertia =
⇢B
V

⇢ˆ
@V

liAi (ü · n̂) n̂ · (ni ⌦ ni) dS

�
ˆ
V

liAiü · (ni ⌦ ni) dV

�

(30)

with n̂ the surface normal of the unit cell. The re-
quirement of periodicity implies

´
@V

liAi (ü · n̂) n̂ ·
(ni ⌦ ni) dS = 0 leaving the expression:

finertia = �⇢B
V

ˆ
V

liAiü · (ni ⌦ ni) dV (31)

Expressing the volume integral as a sum over the
finite struts:

finertia = �
(

⇢B
V

nbars
X

i=1

liAi (ni ⌦ ni)

)

· ü. (32)

Rearranging Eq. 32 yields the equation

finteria = ⇢ü� ⇢B
V

nbars
X

i=1

liAi (I� ni ⌦ ni) · ü (33)

which expresses the inertial force as the macroin-
ertia minus a microinertial correction term.

Using Eq. 29 and expanding the volume integral
into a sum over the struts, Eq. 27 can also be
expressed as

finertia = ⇢ü�r·
(

⇢B
V

nbars
X

i=1

liAi (I� ni ⌦ ni) · "̈
)

.

(34)
With this form the balance of linear momentum
can be expressed as

⇢ü = r·
(

� (") +
⇢B
V

nbars
X

i=1

liAi (I� ni ⌦ ni) · "̈
)

,

(35)

meaning the microinertial correction can be ap-
plied as a fictitious stress instead of a modification
to the standard inertial force:

⇢ü = r · {� (") + �µ ("̈)} . (36)

The microinertial term developed here specifically
for a truss lattice material resembles the result
of applying the general theory developed by Fish
et al. (2002b,a) and Fish et al. (2012) to the peri-
odic truss system.

3.2.2. Implementation of the microinertial correc-
tion

Depending on the application, there may be ad-
vantages to implementing either Eq. 33 or Eq. 36.

Equation 33 is preferable when calculating the
elastic wavespeeds in the homogenized truss via
the Christoffel equation. The standard eigenvalue
problem

�

Cijklnjnl � !2⇢�ik
�

pk = 0 (37)

with Cijkl the (effective) elastic stiffness, nj the
direction, ! the frequency, and pk the polarization
vector becomes the generalized eigenvalue problem

�

Cijklnjnl � !2Mik

�

pk = 0 (38)

with Mik = ⇢B

V

Pnbars

s=1 l(s)A(s)n
(s)
i n

(s)
j üjk.

For implicit finite elements Eq. 32 may also be
preferable. The inertial term (mass matrix) of the
standard, implicit Galerkin discretization for the
unknown accelerations d̈j with shape functions Nij

finertia =

ˆ
⌦
⇢NikNkjd⌦d̈j (39)

becomes

finertia =

ˆ
⌦
⇢NikGklNljd⌦d̈j (40)

with

G =
⇢B
Vcell

nbars
X

i=1

liAi (ni ⌦ ni) . (41)

Therefore, implementing the microinertial correc-
tion requires only changing the definition of the
mass matrix.

In explicit finite element formulations or in im-
plicit finite element implementations where alter-
ing the mass matrix is difficult Eq. 36 becomes
preferable. In these situations the microinertial
correction can be implemented as a fictitious stress
calculated during the material stress update. At a
minimum, a finite element framework will provide
a material model with the strain at the new and
previous time steps and the set of history variables
at the previous time step. The model must return
the updated stress:

�n+1 = � ("n+1, "n, sn) . (42)
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To implement the microinertial correction the ma-
terial model instead returns

�n+1 = � ("n+1, "n, sn)+

⇢B
V

nbars
X

i=1

liAi (I� ni ⌦ ni) · "̈n+1. (43)

The update requires the second time derivative of
the strain "̈n+1, typically not available to a FE ma-
terial model. The material model could construct
the time derivative via the differencing scheme

"̈n+1 =
"̇n+1 � "̇n
�tn+1

. (44)

This scheme requires the rate of strain at the pre-
vious time step as an additional history variable.
If the finite element formulation does not provide
the strain rate, it can be calculated again by dif-
ferencing as

"̇n+1 =
"n+1 � "n
�tn+1

. (45)

4. Example analyses: the octet truss

In this work the octet truss (Fuller, 1961) serves
as an exemplar for stretch-dominated lattice ma-
terials. Previous research describes the elastic and
plastic properties of periodic octet truss structures
(Deshpande et al., 2001; Elsayed and Pasini, 2010).
Figure 1 shows the unit cell of the octet truss
geometry. The direct lattice vectors correspond
to the cartesian coordinate system shown on the
figure. Consider an infinite, periodic octet truss
comprised of struts of equal cross-sectional area A
and Young’s modulus E. The approximate rela-
tive density of this truss is:

⇢̄ =
6
p
2A

l2
. (46)

Following the procedure summarized in Section 2
leads to the effective elastic stiffness (in Voigt no-
tation):

� = C · " (47)
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(48)

Property Description Value
E Young’s modulus 1780MPa
⌫ Poisson’s ratio 0.35
�0 Yield stress 40MPa
H Hardening modulus 100MPa
⇢B Strut density 1.18 g/cm3

Table 1: Material properties for the finite element simula-
tions and (excepting Poisson’s ratio ⌫) the equivalent con-
tinuum truss model.

and the procedure described in Section 3.2 pro-
duces the inertial body force, including microiner-
tial terms:

finertia = ⇢B ⇢̄

2

4

1
3 0 0
0 1

3 0
0 0 1

3

3

5 · ü (49)

where ⇢B is the bulk density of the strut material.
Note for this particular periodic truss the inertial
force can be expressed as

finertia =
1

3
⇢B ⇢̄ü. (50)

The physical mass density of the infinite truss is
⇢ = ⇢B ⇢̄. Therefore, the effective inertial den-
sity of the truss is one-third of its physical mass
density – with microinertial effects generating the
difference between the physical and effective iner-
tial density. Implementing the microinertial cor-
rection to the octet truss requires only reducing
the inertial density of the equivalent continuum
by two-thirds.

The stiffness matrix (Eq. 48) of the octet truss
has cubic symmetry. This implies the elastic prop-
erties of the octet truss are anisotropic. The plas-
tic response of the octet is similarly anisotropic.
Therefore, the results presented below depend on
the orientation of the octet relative to the applied
loading. All the load cases described below are
uniaxial deformations after rotation of the truss.
A crystallographic-type system describes the ori-
entation of the octet after rotation. Figure 1 shows
a 100 orientation. A 110 orientation rotates the
octet so that the image of the x-axis lies along
the line described by g1 + g2 in the original co-
ordinates. Similarly, a 111 orientation rotates the
octet so that the image of the x-axis lies along
the line described by g1 + g2 + g3 in the original
coordinates.

4.1. Static analysis
Figure 4 shows one of three meshes used to

verify the equivalent continuum model described
in this work against detailed finite element mod-
els in quasi-static conditions. The three meshes
have the same basic structure but vary the ra-
dius of the struts to change the overall relative
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Figure 4: One of three meshes used for verifying the quasi-static properties of the reduced model against full finite element
simulations. For all simulations l = 0.2077mm, which also fixes the size of the unit cell. Each simulation has a different
strut radius r to target a particular value of relative density (⇢̄). Changing the strut radius affects the discretization, but
all meshes have approximately 30,000 elements and nodes.
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Figure 5: Uniaxial deformation, 100-direction tension
stress/strain curves for the octet truss at different relative
densities. The plot compares the reduced model developed
here to full finite element simulations of an octet truss unit
cell.

density of the unit cell (⇢̄=0.1,0.3,0.5.) The FE
models are loaded with applied displacements in
the x-direction and are under symmetry bound-
ary conditions in the y- and z-directions. The FE
analyses are run with WARP3D, an open-source,
implicit Lagrangian, nonlinear finite element pro-
gram (http://www.warp3d.net/). The equiva-
lent applied strain is

" =
�dapplied

s
(51)

with dapplied the applied displacement and s the
length of the unit cell, here s =

p
2l = 0.294mm.

Define the equivalent stress as the volume average
of the stress in each element over the total unit
cell

� =
1

V

ˆ
⌦
�edV. (52)

The material model at all elements in the FE simu-
lation is bilinear plasticity, with Young’s modulus
E, Poisson’s ratio ⌫, yield stress �0, and plastic
hardening modulus H. Table 1 summarizes the
material properties.

For direct comparison to the FE models, the
material model described in this work is driven
with the (Voigt notation) strain vector

" =
⇥

" 0 0 0 0 0
⇤

. (53)

The material properties are the same as for the FE
simulations, listed in Table 1, except the Poisson’s
ratio ⌫ is not a parameter of the equivalent truss
model.

Figure 5 shows a series of stress-strain curves
comparing the equivalent continuum model to

the finite element simulations. At low values of
relative density the equivalent continuum model
agrees with the FE results. As the relative den-
sity of the truss increases the equivalent continuum
model becomes less and less accurate. Figure 6 ex-
plains this trend. The figure shows the axial stress
in a strut of the finite element model for the three
different values of relative density. The equivalent
model assumes the structure behaves as an ideal
truss – that bending deformation does not occur in
the struts. As Fig. 6 shows, this assumption holds
at lower values of relative density where the slen-
derness of the struts l/r remains high. The normal
stress profile for ⇢̄ = 0.1 is nearly a horizontal line
– implying zero bending. As the slenderness of the
struts decreases the amount of bending increases.
This invalidates the assumption of the equivalent
continuum truss model and produces the loss of ac-
curacy shown in Fig. 5. This increase in bending
stress shows that labeling the octet truss geometry
as stretch-dominated must also include the caveat
that the slenderness of the struts remains large
or, equivalently, the relative density remains low.
For practical truss structures assembled by addi-
tive manufacturing processes the relative density
is small, typically less than ⇢̄ = 0.25. In this range
the lattice deforms mostly by stretching, the as-
sumptions of truss theory are valid, and the equiv-
alent continuum model proposed in this work re-
mains accurate.

Figure 7 shows the effect of truss orientation on
the quasi-static stress-strain curves generated by
the equivalent continuum model. Both the elas-
tic and plastic properties are anisotropic. In the
elastic regime, the 111 orientation has the high-
est stiffness, followed by the 110, and 100 orien-
tations. This follows from the structure of the
cubic equivalent elasticity tensor and the general
tend has been observed by other researchers (Desh-
pande et al., 2001; Johnston et al., 2006). For
plasticity the directional effects are more compli-
cated. The 100 orientation has the highest yield
stress followed by the 111 and 110 orientations.
Examining the rotation of the struts relative to
the applied loading for each different truss orien-
tation reveals the cause of this trend in the yield
stress. In the 110 orientation a family of struts
aligns directly with the loading axis, resolving a
large amount of strut tension. This causes those
struts to yield under comparatively little applied
load, decreasing the macroscale, equivalent yield
stress. In the 100 orientation all struts are sub-
stantially misaligned with the applied loading, re-
solving relatively little tension and requiring more
applied load to yield. The orientation of the truss
also effects the slope of the macroscale hardening
curve. Load redistribution in the struts can cause
a kink in the hardening curve. For the 111 orienta-
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Figure 7: Uniaxial deformation stress/strain curves for the
octet truss in three different directions: 100, 110, and 111.

tion load redistribution actually causes macroscale
softening, before additional redistribution returns
the curve to hardening.

4.2. Hugoniot curves for planar impact

Figure 8 shows a finite element simulation de-
signed to verify the dynamic aspects of the equiva-
lent model, including the microinertial terms. The
figure shows a mesh for an explicit FE simulation
of the impact of a flyer on a 100 configuration of
octet unit cells. Inflow boundary conditions rep-
resent a massive flyer compared to the truss struc-
ture. The boundary conditions in the off-impact
directions constrain the model to uniaxial defor-
mation. The case of interest here is wave propa-
gation in a semi-infinite medium. Therefore these
results only consider the time before the elastic
wave reaches the back face boundary conditions.
The FE simulations were run with ALE3D, an
arbitrary Lagrangian-Eulerian finite element code
developed at Lawrence Livermore National Labo-
ratory (Nichols, 2014).

Figure 9 compares the FE results, at several dif-
ferent impact velocities v, to the equivalent contin-
uum model developed in this work. The initial rel-
ative density of the lattice material is ⇢̄ = 0.1 for
both the FE simulation and the continuum model.
This figure shows a particle velocity-strain Hugo-
niot curve, so that the slope of the Rankine line
connecting any two points on the Hugoniot gives
the shock speed. In the FE models two approxi-
mately steady shocks develop. For each of these
two shocks the combination of a wavespeed and a
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boundary conditions represent a massive impactor compared to the truss. The end of the back plate is fixed. Mesh contains
approximation 1 million elements.
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final particle speed produces a single point on the
Hugonoit. The coordinates of this point can be
constructed via the Rankine-Hugoniot conditions.
For the continuum material model a simple python
script directly solves the nonlinear equations rep-
resenting the Rankine-Hugoniot conditions for the
unknown shock speed c and final strain "+ given
the initial state "� and ẋ� and final particle ve-
locity ẋ+:

ẋ+ � ẋ� = c
�

"� � "+
�

�
�

"+
�

� �� = ⇢I ⇢̄c
2
�

"+ � "�
�

. (54)

Here, � ("+) represents the equivalent continuum
material model developed in this work subjected
to axial strain in the direction of interest. Solv-
ing Eq. 54 then requires inverting the nonlinear
stress-strain relation. The term ⇢I represents the
effective inertial density of the truss, accounting
for microinertial effects. For the octet, as shown
above, ⇢I = 1

3⇢B .
As Figure 9 indicates, the effective truss behaves

elasto-plastically with the bilinear Hugoniot re-
flecting the elastic-to-plastic transition (Davison,
2008). The transition point between elastic and
plastic response is called the Hugoniot elastic limit
(HEL). In the finite element model this means for
impactor speeds above ẋHEL two shocks propa-
gate through the simulation: an initial elastic pre-
cursor wave, with wavespeed equal to the elastic
sound speed of the effective material, followed by
a plastic compaction wave. Therefore, each simu-
lation produces two data points on the Hugonoit:
the elastic limit, reflecting the properties of the
elastic precursor, and a final point, reflecting the
properties of the compaction wave. Similarly, care
must be taken when solving Eq. 54 for the con-
tinuum model. For final particle velocities ẋ+ less
than ẋHEL the initial state of the material is qui-
escent: ẋ� = 0 and "� = 0. For particle velocities
above the elastic limit, the initial state of the ma-
terial is at the HEL: ẋ� = ẋHEL and "� = "HEL.

In the elastic regime, the continuum Hugoniot
curve lies on the HEL points extracted from the
finite element simulation. This means the equiva-
lent model reproduces the elastic sound speed ob-
served in the FE simulations. However, as the im-
pact velocity increases the continuum model be-
comes less accurate. Detailed observation of the
FE simulation results reveals three factors affect-
ing the accuracy of the continuum model:

1. At moderate impact velocities the compaction
wave significantly displaces the truss joint po-
sitions. Extending the continuum model to
large deformations by allowing the coordi-
nates of the joints to deform with the over-
all material deformation would eliminate this
source of error.

2. At higher impact velocities struts can fail in
bending by dynamic buckling. The model
does not account for this mode of deforma-
tion.

3. Finally, at very high impact velocities the en-
tire truss structure substantially collapses at
the compaction shock front. The material
around the compaction shock no longer re-
sembles a periodic truss but rather a solid
with dispersed voids. The mechanics of the
model described here do not account for this
behavior.

Despite these shortcomings, the equivalent con-
tinuum model does approximately reproduce the
main features of the Hugoniot curve extracted
from the FE simulation. In particular, and es-
pecially at high impact velocities, the compaction
wavespeeds calculated from the FE results and the
wavespeeds computed from the continuum model
closely match. Furthermore, in the elastic regime
the continuum model agrees with the FE results.
Neglecting microinertial effects, for example, by
using the physical density ⇢̄⇢B in place of the effec-
tive inertial density ⇢̄⇢I results in significant errors
between the equivalent continuum model and the
finite element results in the elastic regime – even
though as Section 4.1 demonstrates the effective
elastic tensor exactly reproduces the quasi-static
elastic response of the discrete structure.

Figure 10 shows the effect of impact direction on
the Hugoniot curve. Plastic and elastic anisotropy
have a significant influence on model behavior. For
example, the 100 Hugoniot curve varies substan-
tiality from the 110 and 111 direction curves. The
elastic sound speed also varies with the direction
of impact, reflecting the cubic anisotropy of the
effective stiffness tensor.

5. Conclusions

The key contributions of this work are:

• An equivalent continuum model for periodic
truss structures that includes dynamic effects
and verification of the model against detailed
finite element simulations. The continuum
model is most accurate for trusses with low
relative densities, at low levels of deformation,
and low impact velocities. However, it pro-
vides reasonable accuracy even at the higher
levels of deformation associated with shock
loading.

• For simple lattices, the expression for the ax-
ial stress resolved in each strut preserves joint
equilibrium under arbitrary loadings, an im-
provement over previous models.
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• Overcoming the problem of vertices on the
equivalent truss yield surface by incorporating
moderate rate sensitivity. Crystal plasticity
models inspire this solution. The work draws
other connections between crystal plasticity
and equivalent truss models. These connec-
tions develop because both types of models
describe lattice materials.

• A novel expression for the inertial body force
of a periodic truss that correctly accounts
for microinertial effects. Accurate calculation
of dynamic properties, even long wavelength
characteristics such as the elastic sound speed,
requires these microinertial corrections in ad-
dition to the correct effective elastic stiffness
tensor.

The equivalent continuum model developed here is
suitable for implementation as a standard material
model in a finite element code. Such an implemen-
tation can correctly handle boundary effects and
more general loadings than the verification exam-
ples presented here. For simple lattices, the small
deformation model described in this work also eas-
ily extends to large deformations via a process
analogous to how crystal plasticity models extend
to large lattice deformations.

Acknowledgements

References

Asaro, R. J., 1983. Micromechanics of crystals and poly-
crystals. In: Adv. Appl. Mech. Vol. 23. pp. 1–115.

Bishop, J., Hill, R., Jun. 1951a. A theoretical derivation
of the plastic properties of a polycrystalline face-centred
metal. Philos. Mag. 42 (334), 1298–1307.

Bishop, J., Hill, R., Jul. 1951b. A theory of the plastic
distortion of a polycrystalline aggregate under combined
stresses. Philos. Mag. 42 (327), 414–427.

Davison, L., 2008. Fundamentals of shock propagation in
solids.

Deshpande, V., Fleck, N., Ashby, M., Aug. 2001. Effective
properties of the octet-truss lattice material. J. Mech.
Phys. Solids 49 (8), 1747–1769.

Elsayed, M. S., Pasini, D., Jul. 2010. Multiscale structural
design of columns made of regular octet-truss lattice ma-
terial. Int. J. Solids Struct. 47 (14-15), 1764–1774.

Evans, A., Hutchinson, J., Fleck, N., Ashby, M., Wadley,
H., Jan. 2001. The topological design of multifunctional
cellular metals. Prog. Mater. Sci. 46 (3-4), 309–327.

Fish, J., Chen, W., Nagai, G., May 2002a. Non-local disper-
sive model for wave propagation in heterogeneous media:
multi-dimensional case. Int. J. Numer. Methods Eng.
54 (3), 347–363.

Fish, J., Chen, W., Nagai, G., May 2002b. Non-local dis-
persive model for wave propagation in heterogeneous me-
dia: one-dimensional case. Int. J. Numer. Methods Eng.
54 (3), 331–346.

Fish, J., Filonova, V., Kuznetsov, S., Sep. 2012. Micro-
inertia effects in nonlinear heterogeneous media. Int. J.
Numer. Methods Eng. 91 (13), 1406–1426.

Forest, S., Pilvin, P., 1999. Modelling finite deformation of
polycrystals using local objective frames. Zeitschrift fuer
Angew. Math. und Mech. 79, 199–202.

Fuller, R. B., 1961. Octet truss.
Hill, R., Rice, J., Dec. 1972. Constitutive analysis of elastic-

plastic crystals at arbitrary strain. J. Mech. Phys. Solids
20 (6), 401–413.

Howard, S. M., Pao, Y.-H., Aug. 1998. Analysis and Exper-
iments on Stress Waves in Planar Trusses. J. Eng. Mech.
124 (8), 884–891.

Hutchinson, R., Fleck, N., Apr. 2006. The structural perfor-
mance of the periodic truss. J. Mech. Phys. Solids 54 (4),
756–782.

Johnston, S. R., Rosen, D. W., Reed, M., Wang, H. V.,
2006. Analysis of mesostructure unit cells comprised of
octet-truss structures. In: Proc. Seventeenth Solid Free.
Fabr. Symp. Austin, TX.

Kocks, U. F., 1998. Kinematics and Kinetics of Plasticity.
In: Kocks, U. F., Tome, C. N., Wenk, H.-R. (Eds.), Tex-
ture and Anisotropy. Ch. 8, pp. 327–389.

Kruth, J.-P., Leu, M., Nakagawa, T., Jan. 1998. Progress
in additive manufacturing and rapid prototyping. CIRP
Ann. - Manuf. Technol. 47 (2), 525–540.

Martinsson, P.-G., Babuška, I., May 2007. Mechanics
of Materials with Periodic Truss or Frame Micro-
Structures. Arch. Ration. Mech. Anal. 185 (2), 201–234.

Messner, M. C., Beaudoin, A. J., Dodds, R. H., 2015. Con-
sistent crystal plasticity kinematics and linearization for
the implicit finite element method. Eng. Comput. In
press.

Mohr, D., Jun. 2005. Mechanism-based multi-surface plas-
ticity model for ideal truss lattice materials. Int. J. Solids
Struct. 42 (11-12), 3235–3260.

Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E.,
Hernandez, J., Amato, K. N., Shindo, P. W., Medina,
F. R., Wicker, R. B., Jan. 2012. Metal fabrication by
additive manufacturing using laser and electron beam
melting technologies. J. Mater. Sci. Technol. 28 (1), 1–
14.

Nichols, A., 2014. ALE3D User’s Manual. Tech. rep.,
Lawrence Livermore National Laboratory.

Pao, Y.-h., Keh, D.-c., Howard, S. M., 1999. Dynamic
response and wave propagation in plane trusses and
frames. AIAA J. 37 (5), 594–603.

Rosen, D. W., Jan. 2007. Computer-aided design for ad-
ditive manufacturing of cellular structures. Comput.
Aided. Des. Appl. 4 (5), 585–594.

Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.,
Bieler, T., Raabe, D., Feb. 2010. Overview of consti-
tutive laws, kinematics, homogenization and multiscale
methods in crystal plasticity finite-element modeling:
Theory, experiments, applications. Acta Mater. 58 (4),
1152–1211.

Signorelli, J., von Flotow, A., Oct. 1988. Wave propagation,
power flow, and resonance in a truss beam. J. Sound Vib.
126 (1), 127–144.

Srikantha Phani, A., Woodhouse, J., Fleck, N. A., 2006.
Wave propagation in two-dimensional periodic lattices.
J. Acoust. Soc. Am. 119 (4), 1995–2005.

Wang, Z.-P., Sun, C., Oct. 2002. Modeling micro-inertia in
heterogeneous materials under dynamic loading. Wave
Motion 36 (4), 473–485.

Warren, W., Kraynik, A., Mar. 1987. Foam mechanics: the
linear elastic response of two-dimensional spatially peri-
odic cellular materials. Mech. Mater. 6 (1), 27–37.

Winter, R. E., Cotton, M., Harris, E. J., Maw, J. R., Chap-
man, D. J., Eakins, D. E., McShane, G., Mar. 2014.
Plate-impact loading of cellular structures formed by
selective laser melting. Model. Simul. Mater. Sci. Eng.
22 (2), 025021.

Yong, Y., Lin, Y., Jul. 1992. Dynamic response analysis
of truss-type structural networks: A wave propagation
approach. J. Sound Vib. 156 (1), 27–45.

Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M.,
DeOtte, J., Duoss, E. B., Kuntz, J. D., Biener, M. M.,
Ge, Q., Jackson, J. a., Kucheyev, S. O., Fang, N. X.,

14



Spadaccini, C. M., Jun. 2014. Ultralight, ultrastiff me-
chanical metamaterials. Science (80-. ). 344, 1373–1377.

A. Material Jacobian

Algorithm 1 poses the material model de-
veloped in this work as the solution to a
set of nonlinear residual equations Rn+1 =
0. Solving these equations via the Newton-
Raphson method requires the Jacobian matrix
@Rn+1/@xn+1, where xn+1 is the vector of un-
known variables, here

⇥

�n+1 �̄n+1 ⇢̄n+1

⇤T ,
with � =

⇥

�xx �yy �zz �yz �xz �xy

⇤T
.

Based on the structure of the residual equations
the Jacobian matrix divides into blocks of the form
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